NEW ZEALAND’S WOEFUL MENTAL HEALTH STATISTICS FOR YOUNG PEOPLE

The subject of mental health unwellness in children and young people has been prominent in the New Zealand media in recent weeks, with huge cause.

Globally suicide is one of the top three causes of death in young people aged 15-19, globally(1). New Zealand has the highest suicide rate for 10-14 and 15-19 year olds out of 19 developed countries. These alarming figures were revealed in February this year through a study by the British healthcare think tank Nuffield Trust which compared UK’s record on adolescent health and wellbeing to 18 other developed, wealthy countries(2,3).

A 2017 University of Auckland study published in the Australian and New Zealand Journal of Psychiatry, found nearly one in 20 high school students (4.5%) reported attempted suicide, while 7.9% had repeatedly self-harmed over a 12 month period. Students from poor families were nearly three times more likely to try to take their own lives(4). Rates in rainbow youth, and young Māori men, are also higher than for others(5,6).

Reasons for these alarming statistics are multiple, but the fact that millennials and increasingly younger people are living a significant part of their lives online particularly on social networking and gaming, is undoubtedly contributory(7).

We live in a country where our culture and attitudes to depression, have historically been based too much on the ‘buck up and get on with it’ approach. However, these statistics and also the ‘Blam Blam Blam’ song of the same name released in 1981, demonstrate that the comment by former Prime Minister Robert Muldoon ‘There is no Depression in New Zealand’, has long been disproven.

The government is currently looking at how it can improve suicide prevention, and the increased media coverage of this issue is welcome. Early recognition and diagnosis, adults being more open to talking to young people about suicide and depression, and fostering a society where more of a sense of purpose can be gained by young people along their journey through youthhood and into adulthood, are critical needs.

Antidepressant drugs have saved countless lives since their inception in the late 1950s, despite some limitations. They don’t always work; adverse effects can be unpleasant and contribute to a very low compliance rate, and without addressing contributory factors, their long-term efficacy is often limited.

Herbal medicines have been used by different cultures for depression since time immemorial, although different terminologies were and still are often applied to this, and a definitive diagnosis according to DSM criteria obviously wasn’t made!

St John’s Wort (Hypericum perforatum) is of course the herb best known to western medical herbalists as an antidepressant, and there are now more than 2,000 peer-reviewed publications on this herb, including more than 30 clinical trials showing it to be as effective as antidepressant drugs for the treatment of mild to moderate depression(8). Its use increased dramatically from 1996 following publication of a favourable meta-analysis of clinical trials published in the British Medical Journal, and while usage reduced at least for a time from 2000 following reports of drug interactions and safety concerns, St John’s wort preparations are widely available ‘over the counter’ in New Zealand and Australia.

While this herb has certainly helped herbal medicine to be taken more seriously by English speaking populations, the self-medication of St John’s Wort in major depression is not necessarily the best approach. There are many more herbs that can also be useful in young people prone to depression, where the complexities of the condition are best suited to an overarching treatment plan overseen by suitably trained health practitioners. This is particularly so given New Zealand’s woeful record in preventing teenage suicide.

Depression frequently coexists with intense anxiety, in addition to those confounding socio-economic and cultural factors, such as poverty and too much online time. The pressure to succeed and worries about the environment and future contribute to an unhealthily high level and type of stress in young people. These factors can manifest as generalised anxiety disorder, sleep issues and over time result in feelings of low self-esteem and depression.

Herbal medicine has much more than St John’s wort to offer for young people with, or prone to, depression. As anxiolytics (anti-anxiety agents), they are much safer interventions than drugs such as benzodiazepines, and there are many herbal adaptogens (stress protectors) that can additionally help insulate young minds against the effects of prolonged or acute stress(9).

An example of how a herbal practitioner-directed treatment approach can help, was shown through a clinical trial undertaken in China between 2009 and 2013. This investigated the effects of individualised treatments with herbal medicine in a group of 146 severely depressed patients admitted to hospital(10). All patients continued to receive treatment with a range of antidepressant and other psychotropic drugs, and half of them took various additional herbal medicines that were individualised to their situation by traditional Chinese medicine practitioners.

Patients who received adjunctive herbal medicines during their average 28 day hospital stay, were 2.1 times more likely to achieve a clinical response (according to the validated Hamilton Rating Scale for Depression), & 5.8 times more likely to achieve remission, than those who received drug treatment only(10). Concomitant Herbal medicine use was also associated with fewer incidences of physical tiredness, headache, palpitation, dry mouth and constipation, although digestive discomfort was more often reported.

Against the background of alarming figures about mental health and particularly teenage suicide, governments should take a serious look at the potential for Herbal Medicine practitioners to help reduce these statistics and save lives. A plethora of natural health products aimed at the management of anxiety and depression are now directly available through pharmacies and health food stores. However, young people experiencing mental health challenges and who are clearly at an unacceptable risk of suicide, warrant a much more personal, integrative and professional approach to their particular situation. Given the seriousness of this issue facing so many of our young people, the need for regulatory and funding systems that support the provision of much greater access to the personalised interventions and individualised treatments that well-trained medical herbalists can provide, is now urgently needed.

 

Refs:

  1. World Health Organization (2014a) ‘Adolescent health epidemiology’.www.who.int/maternal_child_adolescent/epidemiology/adolescence/en.
  1. NZ Herald, Feb 26, 2019, NZ Ranks bottom of developed countries on youth mortality rates.
  2. https://www.nuffieldtrust.org.uk/news-item/sound-the-alarm-we-must-improve-our-young-people-s-health-services.
  3. Chan S et al, Aust N Z J Psychiatry. 2018 Apr;52(4):349-356
  4. https://www.health.govt.nz/our-work/populations/maori-health/tatau-kahukura-maori-health-statistics/nga-mana-hauora-tutohu-health-status-indicators/suicide-and-intentional-self-harm.
  5. NZ Herald, 2 Aug, 2017, Break the silence: Rainbow suicide rate five times higher than mainstream.
  6. NZ Herald, Aug 17, 2019. Anxious millennials reach out for help.
  7. Rasmussen PL, Feb 2018. St Johns Wort: Safety concerns in clinical practice. Practitioner Webinar, Phytomed Medicinal Herbs Ltd, Auckland, NZ.
  8. Rasmussen PL, Feb 3, 2017. Why Herbs should be the first choice of treatment for acute anxiety. http://www.herbblurb.com
  9. Liu LY et al, J Affect Disord 2015; 170:71-77. 

ETHICS, SUSTAINABILITY, AND WHERE OUR HERBS COME FROM

Sustainability. A much used word these days, it is generally defined as living in a way that meets the present generation’s needs without compromising the ability of future generations to meet their’s. The Maori word Kaitiakitanga, is a better term however. Kaitiakitanga is based on the deeper concept that people are all closely connected to and part of the land and nature, and puts the onus of guardianship and protection on all of us to care for all aspects of our environment.

Something that most consumers of natural health products don’t know or think enough about, is where the plants that provide the raw materials for these products, actually come from.

Tea and coffee drinkers increasingly take an interest in the country of origin, the plantation business model (profit-sharing or not), Fairtrade and organic or non-organic status of the leaves or beans that produce their daily drinks. This is because more of us are now making the connections between sustainability, ethics, quality and health. Not just our own health, but that of other people and the environment.

What few people realise is that global medicinal herb trading is similar to that for other commodities, in that most medicinal herbs procured globally come from people living in rural communities in countries where wage expectations are relatively low. As with commodity crops such as tea, coffee, cocoa and cotton, the international herb and spice trade and supply chain is driven largely by the abilities of those in the final rather than earlier stages of the supply chain to make a profit.

As a teenager, I was emotionally moved and became resolved to try and help make the world a better place, after reading “How the Other Half Dies”, by Susan George. Susan’s 1976 book, provided startling information about Third World poverty, underdevelopment and debt, and the contribution of corporate greed and politics to a world in which the gap between wealthy and poor countries, is far too wide.

The issues raised in the book are even more pertinent today, with the additional onset of Climate Change due to human practices, beginning to majorly impact our ability to produce enough food and ensure people – particularly in poorer countries – have access to healthy food and medicines.

Plants are used as the primary form of medicine by around 80% of the world’s population, but the over-influence of price on procurement practices adopted by most companies, means that quality and Kaitiakitanga are all too often compromised. This affects the likelihood that natural health products consumed by end users are in fact therapeutic, rather than subtherapeutic or contaminated.

Product parameters such as the plant part and extract type, the amount used and dose recommendations made, obviously have a significant impact on why some herbal medicines work and others don’t. However, where plants come from and how they are handled along the way, can also have significant impacts on finished product quality and efficacy.

There are numerous variables and stages involved in medicinal herb supply chains, and all of these are important. If the processes in place for these are good, in that people are receiving a living wage and paying a high level of care and attention to each stage (including growing, harvesting, washing, drying or storing the raw plant materials), the finished product will more likely be good.

Unfortunately there are a lot of unscrupulous practices that sometimes take place within the herb industry–some of it intentional, some of it not. These include adulteration, incorrect species identification, whether workers have washed their hands or have access to clean water, what the collection bags were previously used for, whether the plants were harvested in the rain or sun, and processed quickly or left in a pile in a tarp for a few days until workers had time to process them. Programmes to control use of agrichemicals are also either limited or non-existent in most poorer countries.

Small-scale farmers and workers involved in the majority of medicinal herb production are amongst the most marginalized groups globally. Through Fairtrade people can lift themselves out of poverty to maintain successful livelihoods. Also, by getting more of the herbs we use grown locally, and supporting communities and companies who are trying to build capabilities and provide meaningful jobs in this sector to our own lower socio-economic communities, is a powerful ethical and quality-driven approach, which promotes Kaitiakitanga.

Quality and Ethics are intrinsically linked, just as Quality and Efficacy are. Through prioritisation of ethical behaviours, all of the people involved in supply become motivated and concerned with quality. And the natural health products we take, are then more likely to genuinely promote both personal wellness, and that of the planet and its future.

 

WHY NEW ZEALAND GROWN HERBS ARE BEST!

New Zealand plants are unique, and amongst the best in the world. As an island nation situated a long way away from most other places, in the 55 million years since New Zealand separated from Gondwanaland, its native plants had a long time to evolve before humans arrived, and it’s therefore not surprising that many have some special properties.

Aside from indigenous species, numerous other plants also seem to have special characteristics when grown in the New Zealand environment, and we are fortunate to live in a country where such a wide variety of plants can be grown relatively easily.

Reasons for this are many, but probably include the relative youth of our landmass, the richness of our soils carved from volcanoes, rainforests and other inputs from nature, and our diverse geography and microclimates. There are few countries in the world where one can be sunbathing on the beach in the morning, and skiing in cold alpine temperatures a few hour’s drive away, in the afternoon.

The bioactive and medicinally active compounds in plants, are known in plant physiology and phyto-pharmacology as secondary metabolites. These include many different classes of chemical compounds such as alkaloids, flavonoids, essential oils and phenolic acids, whose functions within the plant are mainly to protect it against harmful influences or predators.

Plants growing in a stressful drought environment will produce higher levels of secondary metabolites than plants which are less stressed. Next time you are out in the bush, look out for kawakawa plants and you may notice that many of the heart shaped leaves contain lots of holes, courtesy of the kawakawa looper moth caterpiller. This is a good example of a plant thought to have greater medicinal properties from secondary metabolites, produced as a defense mechanism against the caterpillars.

One reason why so many plants grow so quickly and well in New Zealand, is thought to be attributable to the hole in the ozone layer in the atmosphere above us. In response to high UV-B light, New Zealand plants have to put greater energies into producing secondary metabolite compounds to protect themselves, many of which have medicinal properties.

New Zealand is also fortunate to have a reasonably strong biosecurity system, together with a relative abundance of water by world standards. Water supplies as well as soil health are critical parameters in producing healthy plants, both for food and for medicines.

New Zealand’s fruit and vegetables are widely known to have a great taste and high quality. This superior raw material quality has contributed significantly to our growing reputation as a country with some of the best cuisine in the world. The kiwifruit, hops, wine and berry industries have flourished and performed well for New Zealand in recent decades, all fundamentally due to their high quality characteristics. Thanks to a great deal of trial and error, hard work, investment of scientific knowhow and money, and most of all a whole lot of Mother Nature. These plant-based products are highly sought after in export markets, and as consumers we are privileged to have a wide selection of excellent quality foods and beverages available to us!

Medicinal plants (herbs) have also shown excellent quality parameters when grown in the New Zealand environment, and some examples of these follow.

Korean and American ginseng (Panax ginseng and Panax quinquefolium), seem to like it here, as very high levels of active ginsenosides have been achieved in ginseng roots. Thanks to work by the former Crop & Food Research (now Plant & Food Research) and a small number of dedicated growers (it takes many years and significant investment to establish and grow ginseng commercially), much has been learnt about ideal growing and harvesting methods, including how to grow it within Pinus radiata forests.

Leaves of ginkgo (Ginkgo biloba) are best known to help prevent dementia and other age-related disorders, as well as improve memory in healthy individuals. Levels of the active ginkgo flavone glycosides and terpenoids in New Zealand grown material are higher than those produced by trees grown in China, where most of the world’s ginkgo is sourced. This enables therapeutic levels to be achieved with a lower dose.

As with ginseng, golden seal (Hydrastis canadensis) is slow-growing and endangered in its natural habitat, yet global demand is high due to research validating its use as an antibacterial agent. This valuable medicinal plant was grown commercially by a couple of growers in New Zealand in the 1990’s, again with agronomy research support from Crop & Food Research. Much was learnt about how to grow it under local conditions, and laboratory tests showed the rhizomes contained very high levels of the active compounds hydrastine and berberine.

Many other medicinal herbs grown in New Zealand have been found by research studies or routine tests by manufacturing companies, to have very high levels of active phytochemicals. These include echinacea (alkylamide levels in the roots), arnica (another increasingly endangered species but New Zealand grown flowers containing high concentrations of sesquiterpene lactones), green tea (high epigallocatechin gallate and theanine levels), and valerian (high valerenic acid levels in the root and rhizome). The New Zealand blackcurrant industry has also grown rapidly over the past 20 years, catalysed by research showing significantly higher levels of antioxidant anthocyanidins in NZ berries than those grown in other countries, and anti-aging and cognitive-enhancing actions. Superior flavour profiles, and higher levels of vitamin C, have also been reported.

In summary, an appraisal of the performance of these “new” and more established medicinal plant crops in our New Zealand environment, shows that in all cases key quality parameters are significantly above average and in some cases are at the top of their field, when compared to the same species grown offshore.

New Zealand grown herbs are amongst the best in the world. Best for the health of ourselves, our pets and animals, our economy, our soils and waterways.

Kaitiakitanga in Māori, is about ensuring an intergenerational stewardship of the land, sea and waterways. Encouraging the growing of more both native and non-native medicinal plants in our own country rather than relying on cheap-labour countries to supply the bulk of our increasing needs, makes good sense.

 

Phil Rasmussen

STATUTORY REGULATION OF MEDICAL HERBALISTS AND NATUROPATHS: AN ESSENTIAL STEP TOWARDS A MORE COST AND OUTCOME BENEFICIAL FUTURE HEALTHCARE SYSTEM

With aging populations, the costs of drugs and institutionalised healthcare continually rising, and government drug funding agencies such as Pharmac always under the pump, it’s time to take a look at just what our taxpayer dollars are funding, and whether the current paradigm is working.

Total expenditure by New Zealand District Health Boards (Pharmac) on Drugs to the year ending 30 June 2018, was $870 million(1).

Health economists and policy advisers know it is unrealistic and unsustainable for governments to continue spending more and more of the GDP on the healthcare budget, and that shifting some of the growing burden of responsibility onto the population to take better care of their own health and wellness (‘self-care’), is a good strategy. However, the increasingly wide gap between those who can and can not afford the best available modern healthcare treatments and interventions, is very worrying. A ‘two tier’ health service in which the quality of state-funded services declines, as more and more pressure mounts on it, is inherently and morally wrong.

Primary care health services are not just those provided by General Practitioners, but also include a wide array of other inputs such as those by Pharmacists, Nurse Practitioners, Social Workers, Occupational Therapists and Drug Counsellors. These are aimed at disease prevention, health education and screening, and avoiding the need for hospital based care. A strong primary health care system is critical to improve the health of all New Zealanders, and reduce health inequalities between different groups(2).

However, the current primary health care system is neither keeping pace with nor adequately addressing the health needs of our population. Increasing challenges and treatment deficits are emerging particularly in areas such as mental health, substance dependency, diabetes prevention, disability services, dementia and infectious disease management. Too many New Zealanders are falling through the gaps or requiring repeated treatments, for recurring health problems(3,4), and health care staff stress levels and recruitment challenges, are worsening.

In New Zealand, most Medical herbalists and Naturopaths have undergone a 3 or 4 year course of study to the level of a degree. Apart from their high level of expertise in the use of specific plant-based medicines to help optimise health and overcome many illnesses, their training in nutrition and herb-drug interactions, and ability to take a ‘wholistic’, more integrative and preventive approach to an individual’s health, means they are well suited to advise and educate, on self-care and wellness interventions.

The estimated cost of a day’s hospital care in New Zealand during an influenza pandemic was put at $2,595 per patient in 2009(18), and current costs are probably in the range of $3,000 to $5,000, depending on the treatment required.  Compare this to the approximate $1,200 per year cost of a daily herbal tonic tailor-made to the patient’s needs and often focussed on prophylaxis. Even if it takes 3 years of such treatment to prevent a single night’s stay in hospital, it is a more cost-effective intervention, and with additional benefits.

Well-educated, higher socio-economic income bracketed and very sick people currently make up the bulk of patients seen by Medical Herbalists and Naturopaths in New Zealand. Meanwhile those on lower incomes who may benefit the most from its numerous inputs, are often unable to afford any non-subsidised treatment, and are effectively being excluded from having natural health as an option available to them.

Despite many holding the view that the benefits of natural health interventions are unproven, there is now compelling evidence from good quality scientific studies, supporting the use of specific herbal medicines when taken as adjuncts to drug medications being used for cancer, diabetes, heart failure, alcohol or drug dependency, and schizophrenia(5-16). There are several potential benefits of herbal medicine when appropriately prescribed to patients receiving conventional treatment for these and other conditions. They include improved patient outcomes, a reduction in the need for drug-based or other expensive medical care options, and thus a lower frequency of drug-related side effects and overall costs(17). Savings in the current drug budget alone, would enable an improved ability to fund new drugs or other healthcare interventions, including more emphasis on the most cost-effective approach, of disease prevention rather than treatment.

New Zealand’s commitment as a signatory to the World Health Organisation “Traditional Medicine Strategy, 2017-2023”(19), puts an obligation on the government to both further research into the area of traditional and plant-based medicines, and to progress statutory regulation of complementary medicine practitioners. There is an urgent need for more research into this area, and for political and funding support to enable the introduction of some such treatments in a regulated manner, into clinical practice.

However, in the case of Medical Herbalists, since 2005, successive New Zealand governments have rebuffed efforts to achieve statutory regulation as a profession under the Health Practitioners Competence Assurance (HPCA) Act. Despite a high level of professionalism shown by their national association, and comprehensive degree level courses being provided by training institutions, there seems little willingness on the part of the state to validate this profession, or ensure appropriate standards are in place to protect public safety, by progressing its latest application for statutory regulation lodged in 2016.

With the government’s so-called ‘Wellness Budget’ soon to be announced, it would be nice to know that more thought is being applied to preventing unwellness, and identifying ways to take some of the pressure off existing healthcare services. By finally recognising the untapped potential of well-trained and professionally registered Medical Herbalists and Naturopaths to make a greater contribution to future NZ healthcare options, we would at last see signs of a genuine commitment to the WHO Traditional Medicine Strategy, and a comprehensive health and wellness strategy for New Zealanders.

 

References:

  1. Pharmac. Pharmaceutical Management Agency Annual Report for the year ended 30 June 2018, 2018.
  2. https://www.health.govt.nz/our-work/primary-health-care
  3. New Zealand Herald 17 Feb, 2016. Fears Canterbury mental health services may be slashed amid budget cutbacks.
  4. New Zealand Herald, 21 April 2019. Limited showers, no meal prep: ‘Ruthless’ plans to cut disabled care revealed.
  5. Rasmussen PL, Eur. J. Herbal Med. 3(1):11-21, 1997
  6. Rasmussen PL, Eur. J. Herbal Med. 3(2):13-19, 1997
  7. Pittler MH et al, Am J Med 2003; 114(8): 665-674.
  8. Doruk A et al. A placebo-controlled study of extract of ginkgo biloba added to clozapine in patients with treatment-resistant schizophrenia. Int Clin Psychopharmacol. 2008 Jul;23(4):223-7.
  9. Barton DL et al, Support Care Cancer 2010; 18(2):179-187.
  10. Barton DL et al, J Natl Cancer Inst 2013; 105(16):1230-1238.
  11. Biswal BM et al, Integr Cancer Ther 2013; 12(4):312-322.
  12. Chen EYH et al, Phytother Res 2012; 26:1166-1172.
  13. Zhang XY et al, J Clin Psychiatry 2001; 62(11):878-883
  14. Zhang XY et al, Psychopharmacology 2006; 188(1):12-17;
  15. Atmaca M et al, Psychiatry Clin Neurosci 2005; 59(6):652-6.
  16. Li J et al, Wuzhi Tablet (Schisandra sphenanthera Extract) is a Promising Tacrolimus-Sparing Agent for Renal Transplant Recipients Who are CYP3A5 Expressers: a Two-Phase Prospective Study. Drug Metab Dispos. 2017 Nov;45(11):1114-1119
  17. Rasmussen PL, Potentially beneficial herb-drug interactions. Practitioner Seminar, July 2016, Phytomed Medicinal Herbs Ltd, Auckland, New Zealand
  18. Wilson N et al, NZMJ 9 November 2012, Vol 125 No 1365; ISSN 1175 8716
  19. WHO Traditional Medicine Strategy: 2014-2023.http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en

 

 

EFFECTS OF HUMAN POLLUTANTS ON PLANTS: THE CASE OF RIBWORT

ribwortRibwort (narrow leaved plantain) is commonly seen in pastures, lawns and street verges, and once positively identified, is rarely forgotten. One of the most useful and endemic “weeds”, its young fresh leaves have been used for centuries as a healing ointment and treatment for slow healing wounds, bites and haemorrhoids, by people from many different parts of the world.

Seed husks of its botanical relative Plantago ovata (commonly known as Psyllium seed), are used as a bulking laxative and for digestive health.

The other main application of Ribwort leaves, is to improve the health and function of the mucous membranes in the respiratory tract. A particular characteristic of this plant, when harvested and prepared in the optimal way, and applied or taken in sufficient doses, is its gentle nurturing and nutritive, but also protective barrier effects on delicate mucous membranes of the nasal passage and other sensitive skin areas of the body. These mucous membranes help protect the sinuses and bronchial tract from invading micro-organisms and other insults, and foods and herbs that optimise their function, can help protect against and manage a wide range of upper respiratory tract conditions.

The diverse phytochemistry of ribwort, which includes polysaccharide hydrocolloids (mucilaginous compounds), phenylethinoid glycosides, flavonoids, coumarins, cinnamic and other phenolic acids, contributes to its anti-inflammatory, antioxidant and antimicrobial activities. This combination of herbal actions makes it a valuable addition to the treatment of inflamed sinuses, catarrh or blocked noses. Research has also found ribwort in large doses to be comparable or superior to the drugs ranitidine and misopristol, in an animal model of peptic ulcer (1).

 

Human influences on the health of this plant

As a common and fairly fast growing plant, ribwort is one of a number of plant species being studied by plant and environmental scientists, for the effects of pollutants on its health and physiology. Recent studies have found ribwort grown near mines, smelting plants and other contaminated areas, accumulates high levels of cadmium, lead and other heavy metals(2-4). Heavy metal contamination of ribwort, dandelion and birch growing in urban areas of Poland with considerable air and soil pollution, has also been shown to be high(5).

In animal farming, anthelmintics (anti-worming drugs) are regularly applied to control gastrointestinal nematodes, and these are excreted from animals into pastures and the wider environment. Along with other drugs such as antibiotics, anthelmintics have become one of a new class of micro-pollutants that disturb the environment. The anthelmintic drugs albenazole, flubendazole and flenbendazole for example, widely used in conventional animal farming, are taken up by and metabolised by ribwort. However, they also produce, in the plant, a significant increase in concentrations of proline (a well-known stress marker), and activities of several antioxidant enzymes. This suggests a possible risk of oxidative damage in this and other plants influenced by these drugs, and is a growing cause of concern(6,7).

Anthelmintic drugs excreted into pastures and taken up by plants also have the potential to impede seed germination negatively, thus affecting affect the regeneration of ribwort and other plants(8).

These studies reinforce the sensitivity of ribwort and other plants to environmental contaminants as a result of human activity, in this case mining, city air pollution, and conventional animal farming. As we are only beginning to discover such delicate links between environmental pollutants and plant health, the importance of growing this plant (and probably numerous others) in certified organic soil as opposed to purchasing it from non-organic, so-called ‘wildcrafted’ or trade broker sources, is highlighted.

Refs:

  1. Melese E et al. Evaluation of the antipeptic ulcer activity of the leaf extract of Plantago lanceolata L. in rodents. Phytother Res. 2011 Aug;25(8):1174-80. doi: 10.1002/ptr.3411. Epub 2011 Feb 7.
  2. Tamás J, Kovács A.Vegetation pattern and heavy metal accumulation at a mine tailing at Gyöngyösoroszi, hungary. Z Naturforsch C. 2005 Mar-Apr;60(3-4):362-7.
  3. Tinkov AA et al. Comparative Analysis of the Trace Element Content of the Leaves and Roots of Three Plantago Species. Biol Trace Elem Res. 2016 Sep;173(1):225-30.
  4. Drava G et al.Trace elements in Plantago lanceolata L., a plant used for herbal and food preparations: new data and literature review. Environ Sci Pollut Res Int. 2019 Jan;26(3):2305-2313.
  5. Nadgórska-Socha A. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere. 2017 Sep;183:471-482.
  6. Stuchlíková Raisová L et al. Evaluation of drug uptake and deactivation in plant: Fate of albendazole in ribwort plantain (Plantago lanceolata) cells and regenerants. Ecotoxicol Environ Saf. 2017 Jul;141:37-42.
  7. Stuchlíková LR et al, Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata). Ecotoxicol Environ Saf. 2018 Jan;147:681-687.
  8. Eichberg C et al. The Anthelmintic Ingredient Moxidectin Negatively Affects Seed Germination of Three Temperate Grassland Species. PLoS One. 2016 Nov 15;11(11): e0166366. doi: 10.1371/journal.pone.0166366. eCollection 2016.

Honeysuckle and other useful weeds surrounding us

In taking my usual summer holiday in rural New Zealand this year, I noticed that over the past year, certain ‘noxious weeds’ seem to have grown more prolific.
While perhaps I shouldn’t focus on such observations when I’m meant to be resting and indulging in leisure pursuits, I’m frequently alarmed at the disconnect between people and plants in their environment. This is especially obvious at this time of year, for two highly medicinal particular species, Chinese Privet (Ligustrum lucidum) and Japanese Honeysuckle (Lonicera japonica).

In January and February the distinctive creamy-white flowers of Chinese Privet trees make their presence obvious in many towns and rural locations and increasingly in areas of native bush. While the flowers are attractive and from a distance somewhat similar to the European Elder (Sambucus nigra), the berries produced are a delicacy to birds, who have successfully spread it throughout the land to make it the most noxious tree in the country. Similarly the smaller but scented flowers of the vigorous climber Japanese Honeysuckle, which open white then turn lemon-yellow, draw my attention to how successful this plant has been in establishing itself in more rural, native bush and farm environments.

Our avian relatives seem to have more incentives than simply having a feed for finding the berries and seeds of these two plants so desirable, as in traditional Chinese and Asian medicine both plants have been common medicines for centuries.

In Asia, Japanese Honeysuckle is traditionally used for febrile illnesses featuring fever, headache, coughs, thirst & sore throat. It is also widely used as an anti-bacterial, anti-inflammatory, antiviral and anti-diabetic agent, and is used topically for skin infections and sores, ulcers, carbuncles, swollen joints and rheumatic conditions.

A recent study found that unripe fruit from Japanese honeysuckle has strong antioxidant properties which contribute to animal health(1). Another study found that extracts improved age-related physiological functions and extended the life expectancy of worms by 22%(2).

Bacteriostatic (antibacterial) effects have been shown against Staphylococcus aureus and Escherichia coli for an ethanolic extract of Japanese honeysuckle leaves(3). In mice with sepsis (a serious bacterial infection of the blood), an ethanol extract of Japanese honeysuckle flower buds enhanced bacterial clearance, reduced the level of sepsis and risk of multiple organ failure, resulting in a lower rate of sepsis-induced mortality (4). This suggests potential applications as a good adjunct with or alternative to antibiotics. With growing concerns around antibiotic resistance, these findings should enhance our interest in this plant, now endemic throughout New Zealand.

Diabetes is another traditional use of Japanese honeysuckle, and researchers in Taiwan have found an ethanol extract of flowering aerial parts to reduce diabetic nephropathy in rats. Japanese honeysuckle treatment to diabetic rats for 8 weeks reversed three key abnormalities associated with renal dysfunction – including reduced creatinine clearance, increased blood urea and proteinuria, and an elevated ratio of kidney weight to body weight(5).

Anti neurodegenerative compounds with monoamine oxidase B receptor affinity (identified as isochlorogenic acid A and isochlorogenic acid), have also recently been detected in Japanese honeysuckle flowers(6). In Korean traditional medicine this plant has been used for cancer management, and anticancer activities on human lung cancer cells have recently been documented for polyphenol compounds extracted from it(7).

I’ve discussed the many medicinal benefits of Chinese Privet fruits in my March 2016 blog, particularly in relation to their potential prophylactic and treatment benefits for degenerative bone and joint conditions such as osteoporosis and arthritis(8). Again, a great deal of research has validated these and other therapeutic actions. Other recent findings include possible benefits of a combination of Chinese Privet and Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus), to protect against bone marrow suppression induced by chemotherapy in mice(9). Inhibitory effects against the influenza A virus have also been reported for secoiridoid components of Privet fruits(10), and compounds with neuraminidase inhibitory activity (a key mechanism of action of anti-influenza drugs), have been isolated from its leaves(11).

Knowledge of these many useful potential medicinal applications for these two plants, should be of great interest both to those wanting cost-effective local solutions to increasing health concerns, as well as those concerned at the damaging effects that they are starting to have as invasive species, on our ecosystem and native species habitats.
The effect of invasive plants on natural ecosystems can be disastrous, firstly for the competition with indigenous species, and secondly, because they limit the stability and availability of natural resources to the whole native species community. They constitute a global environmental, economic, and social change driver as they can dramatically alter the composition of ecosystems and lead to losses in biodiversity, agriculture productivity, and human health. These negative effects of invasive plant species are likely to be exacerbated by climate change, which will foster their further spread especially in valuable fertile areas.
Identifying innovative ways for communities to transform invasive plants from ‘problems to resources’, represents an important challenge for modern societies and policy makers. Bioprospecting and investigating both Lonicera japonica and Ligustrum lucidum to identify and develop new phytomedicines and compounds to promote human health in the future, is surely worth further exploration and research.

SONY DSC

ligustrum jan19
Ligustrum lucidum Jan19

 

1. Guzzetti L et al, Scientific Reports 7:13799, 2017.
2. Yang ZZ Free Radic Biol Med. 2018 Dec;129:310-322.
3. Xiong J et al, Food Chem. 2013 May 1;138(1):327-33
4. Kim SJ et al, J Ethnopharmacol. 2015 Aug 2;171:231-9.
5. Tzeng TF et al, Planta Med. 2014 Feb;80(2-3):121-9.
6. Wu GF et al. J Sep Sci. 2019 Jan 17. doi: 10.1002/jssc.201801255. [Epub ahead of print].
7. Park C, Phytother Res. 2018 Mar;32(3):504-513.
8. Chen B et al, 2017 Molecules. 2017 Sep 5;22(9).
9. Wang C et al, Biomed Pharmacother 2019 Jan;109:2062-2069.
10. Pang X et al, Bioorg Med Chem Lett 2018 May 15;28(9):1516-1519
11. Zhang Y et al, J Chromatogr B Analyt Technol Biomed Life Sci 2018 Apr 15;1083:102-109.

 

CARING FOR OUR LUNGS IN AUCKLAND’S POLLUTION

New Zealand is often seen as a ‘clean and green’ country with levels of pollution much lower than those in the rest of the world, but recent research by Auckland Council has revealed that levels of air pollution in Queen Street (Auckland’s main street) are in fact rising. According to the research, Queen Street levels of black carbon, which are ultra-fine carbon particles emitted to the air and formed through the incomplete combustion of fossil fuels, biofuels and biomass, are more than three times higher than in Canadian cities and two times higher than concentrations in major cities in Europe and the U.S.(1).

Like other forms of fine airborne particulate matter (PM10 particles), black carbon can enter deep into the lungs, and travel into the bloodstream to become deposited into tissues such as the brain or heart. Both short- and long-term exposure is linked with serious health effects. Epidemiological studies have shown an increase in morbidity and mortality rates from chronic obstructive pulmonary disease after exposure to elevated levels of air pollution, and associations between lung cancer and cardiovascular diseases are well established(2, 3). Exposure to traffic related particulate matter is also increasingly associated with an increased risk of birth defects, and Alzheimer’s disease and other dementias in later life(4, 5).

Black carbon also contributes to a warming effect on our climate(6, 7), and to the melting of snow and glaciers(8). Genotoxic and other damaging effects on plants, are also evident as a result of particulate matter pollutants(9).

The biggest source of high levels of black carbon in the council Queen St study was identified as diesel emissions from older buses, trucks, ferries and ships. While replacing diesel buses with electric buses, introducing modern electric trams and pedestrianising Queen Street in the future would reduce black carbon, the currently very high levels of exposure to pedestrians and others working in or visiting the area or similar inner city locations in other cities, are of concern. Similarly high black carbon levels in other New Zealand cities, towns and locations, have been shown to be unacceptably high(10-11).

In Asian cities it is a common sight to see locals wearing a mask to protect their lungs against the damaging effects of vehicle, smoke or factory pollution and so-called toxic smog. Good quality masks provide some form of a physical barrier to filter out some of these harmful airborne particles, but wearing them can be cumbersome.

It is appropriate also, to consider the potential support that certain medicinal plants can provide to lung health, when there is exposure to a high level of airborne pollution. In cities such as Beijing, Delhi and Mexico City, high levels of air pollution have increased demand for herbal products that enhance lung function, and may help protect against some of the numerous damaging health effects that particulate matter and other airborne pollutants can have.

As written about in February 2016 after my visit to Singapore, there are many herbs traditionally used for lung conditions and upper respiratory tract infections, which seem to work at least partially through gently encouraging the natural expectoration process of the millions of cilia cells lining our bronchial trees. The role of these is to remove excess mucus and potentially harmful substances such as particulate matter or unwanted allergens, so enhancing their ability to fulfill this protective function, can be useful. Mucilaginous (polysaccharide hydrocolloid rich) and expectorant herbs such as marshmallow (Althaea officinalis), mullein (Verbascum thapsus) and the NZ native hoheria (Hoheria populnea), seem to work in this manner. Other traditional lung herbs such as elecampane (Inula helenium), white horehound (Marrubium vulgare) and horseradish (Armoracia rusticana), can also be helpful.

In Britain the root of elecampane was traditionally prepared into a candy as a protection against ‘bad air’, and research now suggests this volatile oil and sesquiterpene lactone rich plant may help protect against some of the more serious potential outcomes of exposure to high levels of airborne pollutants.

Increasing data is emerging on potential cancer protective effects of elecampane, and separate research teams have found it to inhibit the growth of a range of different types of human cancer cell lines in vitro, yet not damage normal cells(12, 13). Potential antitumour activity for elecampane extracts against certain forms of brain cancer, has also been reported(14).

Horseradish is a popular European plant whose root has been used not only to make a hot sauce, but also as a traditionally used warming expectorant and lung tonic. It contains phytochemicals which are well absorbed orally and have established chemo-preventive effects. Anti-mutagenic properties and protective effects against DNA damage shown by horseradish(15) are also of interest, as DNA damage prevention is an important mechanism involved in cancer prevention by dietary compounds.

To summarise, efforts should continue to reduce the sources of black carbon and other forms of airborne pollution. However, chemo-preventive or protective effects shown by various herbal extracts against cellular damage and carcinogenicity may be helpful when exposure to air pollution is unavoidable. Inhalation or ingestion of these in appropriate concentrations at or soon after the time of exposure, may impart short term resistance against the many damaging effects of airborne pollutants, and should be further explored.

Refs:
1. ‘Toxic Air Threat’. New Zealand Herald, Nov 7 2018. http://www.nzherald.co.nz
World Health Organisation, Health risks of particulate matter from long-range transboundary
air pollution, 2006. http://www.euro.who.int/__data/assets/pdf_file/0006/78657/E88189.pdf
2. Segersson D et al, Int J Environ Res Public Health. 2017 Jul; 14(7): 742. Published online 2017 Jul 7.
3. Kilian J, Kitazawa M, Biomed J. 2018 Jun;41(3):141-162. doi: 10.1016/j.bj.2018.06.001. Epub 2018 Jul 17.
4. Wang L et al, J Public Health (Oxf). 2018 Aug 18. doi: 10.1093/pubmed/fdy137. [Epub ahead of print]
5. Bond TC, Sun H. Environ Sci Technol. 2005 Aug 15;39(16):5921-6.
6. Ramanathan V et al, Nature. 2007 Aug 2;448(7153):575-8.
7. Painter TH et al, Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15216-21
Rai PK, Ecotoxicol Environ Saf. 2016 Jul;129:120-36
8. Davy PK, & Trompetter WJ (2018a). Black carbon in New Zealand. GNS Science, Lower Hutt.
9. Davy, PK, & Trompetter, WJ (2018b). Heavy metals, black carbon and natural sources of particulate matter in New Zealand. GNS Science, Lower Hutt.
12. Dorn DC et al, Phytotherapy Res, Aug 16 (epub ahead of print), 2006.
13. Spiridonov NA et al, Phytotherapy Res 19(5): 428-432, 2005.
14. Koc K et al, J Cancer Res Ther. 2018 Apr-Jun;14(3):658-661
15. Gafrikova M et al, Molecules. 2014 Mar 14;19( 3):3160-72.

Horseradish

Overcoming Insomnia – Drug versus Herbal Solutions

So-called “Z drugs” such as zopiclone, were first approved as prescription sleeping tablets in the U.S. in 1993, and these are now more often used for insomnia than benzodiazepines such as Valium® (diazepam) or Mogadon® (nitrazepam)(5). However, whether these newer generation drugs which seem to act on different sites of the same GABA-A receptors as benzodiazepines, are in fact safer than their older cousins, is debatable. While their shorter duration of action and different receptor affinities may be associated with a slightly lower risk of dependency, they seem to be just as likely to lead to motor vehicle accidents & falls leading to fractures, particularly in older adults. These are major adverse events associated with the use of these drugs, and together with the risk of dependency, remain real concerns especially with ongoing use. Their prolonged use in young adults, can also compromise cognition, and have other negative adverse events in this age group. Finally, a range of other rare but serious adverse events from Z- drugs have been implicated in recent years, including dementia, infections, respiratory disease exacerbation and pancreatitis(6).

While the once widespread use of strong sedative antihistamine drugs to help knock out infants and children at night seems to have dissipated in recent years, other pharmaceutical drugs apart from benzodiazepines and Z drugs, are still widely used for stress management and associated sleeping difficulties. These include some powerful prescription-only drugs such as antipsychotics, antihistamines and opiates, which in many countries now, are being taken for sleep disorders and related ‘off label’ indications, and not just for their approved uses.

A cross-sectional study in 2015 also revealed that 42% of patients in the community taking a benzodiazepine or zopiclone for insomnia had experienced at least one adverse event, 52% had tried to stop, and that 23% of those taking Z drugs, wanted to stop taking the drug.

Given all of this, it is hardly surprising that many look for a herbal alternative to assist them to nod off and sleep soundly at night. However, while there seems to be a huge array of products out there said to help, including a large array of herbal teas with sleep-invoking names and packaging, when it comes to clinical trials showing that these actually work, there doesn’t seem to be a whole lot of compelling evidence.

A review of clinical trials of herbal products for insomnia, published in the December 2015 journal Sleep Medicine Reviews, evaluated 14 randomised clinical trials involving a total of 1602 participants with insomnia(7). The authors concluded that very few of these trials showed improved sleep quality and duration following herbal interventions. Of relevance perhaps, was that virtually all trials involved the use of herb combinations rather than individual agents. However, as is the case with such trials, the quality of the products involved, and doses used, varied enormously.

One of the best known herbs used traditionally for insomnia, is Valerian (Valeriana officinalis) root. While there has been a mixed appreciation of its value in recent years, and its taste and odour aren’t exactly pleasant, comments from the esteemed German medical practitioner and phytotherapist Rudolf Weiss, who widely prescribed Valerian and other herbs while in Russian captivity with limited drug supplies during World War 2, are salient:

“Valerian is beyond doubt a good and genuine sedative. There is however one aspect that has often been neglected: to be properly effective, valerian has to be prescribed in a sufficiently high dosage. It is almost pointless to give ten or twenty drops of valerian tincture; any effect here would be largely psychotherapy. The dose has to be very much larger, at least a whole teaspoonful of the tincture in water or on sugar…..the single dose of one teaspoonful may, if necessary, be repeated two or three times at short intervals. The greater effectiveness of some proprietary valerian preparations is due to the fact that this has been taken into account, with the dosage made sufficiently high”(8).

Medical conditions or other physical ailments, can also be partly or largely contributory to a poor night’s sleep, and identifying and trying to manage these with appropriate herbal medicines, can also be worthwhile. These include menopause, depression, aches and pains due to arthritis or injury, migraines, alcohol or drug withdrawal, or adverse effects to drugs such as prednisone or methamphetamine.

Clinical trials have shown Valerian and a combination of Valerian with Lemon Balm to improve the quality of sleep in postmenopausal women(9,10). Valerian with acupressure also improved the quantity and quality of sleep in patients with acute coronary syndrome(11). Another trial found Valerian to improve sleep in HIV patients taking the antiviral drug efavirenz(12), and a combination of Valerian, Hops and Zizyphus, to improve both total sleep time and night awakenings frequency(13).

There is in fact much more in the way of good quality published research supporting the benefits of herbal interventions in cases of anxiety or associated conditions, than straight insomnia. Evidence from clinical trials and other studies of anxiolytic as opposed to sedative effects for various medicinal herbs, is already substantive, and growing. As discussed in my February 2017 blog, there are many herbs which have been successfully traditionally used for anxiety. They include Chamomile, Lavender, Skullcap, Passionflower, Valerian, Kava, Lemon balm, Zizyphus, Hops and Withania.

Extracts of the Polynesian plant Kava (Piper methysticum) became popular towards the end of last century, for the management of anxiety disorders and related insomnia. While product type and phytochemistry, and doses used in clinical trials have been highly variable, a clear benefit has been shown in most cases.

Taking adequate doses of these anxiolytic herbs can certainly help promote a better quality sleep, and provide some relief to debilitating insomnia. Most anxiolytic drugs and sedative drugs work on the same GABA receptors, and it is not surprising that the same mode of action probably applies also to herbal medicines. By acting to help ease tension, anxiety and stress, they can effectively address some of the underlying and contributory factors to lack of sleep.

It is clear that more clinical studies to better determine efficacious herbal medicines and optimal doses, are sorely needed for the management of sleep disorders. However, their ability to help prevent insomnia, or avoid the need to take pharmaceutical drugs with a relatively high risk of adverse events, is well established. It is this ability of herbal medicines when properly selected and prescribed to address more than the outcome of a long-standing or acute underlying imbalance in health, but rather to help rebalance overall health and overcome weaknesses in several contributory areas, that makes them such excellent prophylactics. And after all, a prophylactic is preferable to a sticking plaster, especially one that is prone to fall off or leak when left on too long.

Refs:

1. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. Institute of Medicine (US) Committee on Sleep Medicine and Research; Colten HR, Altevogt BM, editors. Washington (DC): National Academies Press (US); 2006. The National Academies Collection: Reports funded by National Institutes of Health.
2. Brzecka A et al, Front Neurosci. 2018 May 31;12:330.
3. Zitting KM Sci Rep. 2018 Jul 23;8(1):11052
4. Bordoloi M, Ramtekkar U. Med Sci (Basel) 2018 Sep 14;6(3).
5. Pollmann AS et al. BMC Pharmacology and Toxicology 2015; 16:19.
6. Brandt J et al, Drugs RD 2017 Dec;17(4):493-507.
7. Leach MJ, Page AT, Sleep Med Rev 2015;24:1-12.
8. Weiss Rudolf Fritz Lehrbuch der Phytotherapie (Herbal Medicine): Published by Hippokrates Verlag, Stuttgart, Germany, 1960. English edition first published 1988.
9. Taavoni S et al, Menopause. 2011 Sep;18(9):951-5
10. Taavoni S et al, Complement Ther Clin Pract. 2013 Nov;19(4):193-6.
11. Bagheri-Nesami M. J Tradit Complement Med. 2015 Jan 31;5(4):241-7
12. Ahmada M et al, Ann Pharmacother. 2017 Jun;51(6):457-464
13. Palmiera G, Nat Sci Sleep. 2017 May 26;9:163-169

PROMISING NEW FINDINGS FOR ROSEMARY

The leaves and sprigs of Rosemary (Rosmarinus officinalis), have been widely used in food preparation and preservation and also for many medicinal purposes, almost as far back as human history began. As a popular plant that is easy to use and often readily accessible, its reputation as a meat preserver and an alleged hair restorer, are fairly well known in herbal folklore.

As with other long-esteemed herbaceous plants, rosemary’s diverse medicinal capabilities and their relevance to the needs of a modern-day world are being increasingly validated by modern research.  Rosemary is now known to have some powerful pharmacological actions, including antioxidant, hepatoprotective, anti-cancer, antimicrobial and potential antidepressant activities(1).

Further possible medicinal uses for this well-known plant have now emerged, following results from recent research.

Preservative actions have long been assigned to rosemary, and scientific evidence supporting an antimicrobial application is very encouraging(2,3). An ethanolic rosemary extract was recently reported to have promising antibacterial activity against different pathogenic bacteria, with particularly good activity against Klebsiella pneumoniae(4). The essential oil of rosemary also exhibits powerful bactericidal (bacteria killing) and anti-biofilm activity against Staphylococcus aureusand Staphylococcus epidermidis(5), common causes of infections such as UTI’s and those from medical devices such as catheters.

Another study by veterinarian researchers recently, found that rosemary essential oil improved the motility of sperm collected from roosters, during its storage at 4 degrees C. These benefits were particularly seen when low concentrations of 8.7 and 87 ug/ml of rosemary essential oil were used. This suggests potential uses in animal fertilisation, and in human fertility clinics and procedures(6). With declining rates of sperm counts and motility, anything that gives sperm a greater chance of successfully fertilising an egg, can only be a good thing. As such it is conceivable that humans (or prehumans) may become exposed to this remarkable herb even before conception itself in the future!

Rosemary also has a reputation for helping prevent cancer, and application of rosemary or its phenolic acid constituents carnosol and ursolic acid were first shown to inhibit skin cancer formation in 1994(7).  Such actions have since been extended to other forms of cancer cells, including most recently the growth of human colon adenocarcinoma(8), and three other gastrointestinal cancer cell lines(9).

Benefits on heart health are also associated traditionally with regular ingestion of this herb, and recent studies on rodents have provided some support for this.  Pre-treatment with an aqueous rosemary extract protected mice against cardiotoxicity and hepatotoxicity(10). Supplementation of the diet of rats with 0.02% rosemary for three months improved diastolic function, and reduced the degree of hypertrophy after a heart attack (myocardial infarction). These effects were associated with improved energy metabolism and decreased oxidative stress(11). Rosmarinic acid has also shown a cardioprotective effect against myocardial infarction and arrhythmia in rats(12).

Collectively, these recent studies supportfurther investigations into the potential use of rosemary as adjuvant therapy with other cardiac drugs in those at risk of a heart attack, or to be taken immediately following such life-threatening cardiac events.

Finally, rosemary is also used in traditional medicine to alleviate rheumatic and abdominal pain. In a rat model of painful diabetic neuropathy, rosemary extract improved hyperglycemia, hyperalgesia and motor deficit(13). Triterpene constituents of an ethanolic extract also reduce abdominal pain in mice(14). These findings suggest rosemary may have analgesic and neuroprotective effects in painful diabetic neuropathy as well as abdominal pain in humans. Rosmarinic acid is likely to contribute to these effects, as other recent studies found it effective in a rat model of neuropathic pain(15-17). Analgesic properties have also previously been reported for rosemary essential oil (18).

Rosmarinic acid is a highly valued phenolic compound found not only in Rosemary, but also in many other well-known plants in the Lamiaceaeand Boraginaceaefamilies, such as Sage, Lemon balm, and Perilla (Perilla frutescens). Potentially beneficial pharmacological properties of this natural compound include anticancer, anti-angiogenic, anti-inflammatory, antioxidant, and antimicrobial activities(19,20). This has lead to increasing demands for it from the pharmaceutical industry. As a result, methods to chemically synthesise rosmarinic acid or produce it by biotechnological methods, are now being actively explored(19).

Beyond rosmarinic acid, however, the cumulative research into the diverse pharmacological actions of the reliable rosemary, show that other phenolic acids, triterpenoids, essential oil and other constituents, also seem to make powerful contributions to its many potential medicinal uses.

 

References:

  1. Andrade JM et al, Future Sci OA. 2018 Feb 1;4(4):FSO283.
  2. Ahn J et al, Food Microbiol. 2007 Feb;24(1):7-14
  3. Nieto Get al, Medicines (Basel).2018 Sep 4;5(3).
  4. Javed H 1stal, Pam J Pharm Sci 2018; 31(3):933-939.
  5. Jardak M et al, Lipids Health Dis.2017 Oct 2;16(1):190.
  6. TouaziL et al, Vel World 2018; 11(5):590-597.
  7. HuangMT et al, Cancer Res.1994 Feb 1;54(3):701-8.
  8. Jaksevicius A, et al, Nutrients. 2017 Sep 21;9(10).
  9. Karimi N, Gastroenterol Hepatol Bed Bench. 2017 Spring;10(2):102-107.
  10. Hamed H et al, Appl Physiol Nutr Metab.2018 Apr 9. doi: 10.1139/apnm-2017-0786. [Epub ahead of print]
  11. Murino Rafacho BP, PLoS One. 2017 May 11;12(5):e0177521
  12. Javidanpour Set al, 2017 Dec;51(11-12):911-923.
  13. Rasoulian B et al, J Physiol Sci 2018; May 12 (epub ahead of print).
  14. Martinez AL et al, J Ethnopharmacol 2012; 142(1):28-34.
  15. Rahbardar GM et al, Biomed Pharmacother. 2017 Feb;86:441-449
  16. Rahbardar MGet al 2018 Feb 1;40:59-67
  17. Di Cesare Mannelli L et al,Sci Rep. 2016 Oct 7;6:34832.
  18. Raskovic A, et al, Eur Rev Med Pharmacol Sci. 2015 Jan;19(1):165-72.
  19. Swamy MK et al, Appl Micriobil Biotechnol 2018.
  20. Shekarchi M et al, Pharmacognosy Mag 2012; 8(29):37-41.

WITHANIA: A USEFUL ADJUNCT WITH ANTIPSYCHOTIC MEDICATIONS

Antipsychotic drugs are strong medicines, and while they can successfully alleviate symptoms of psychosis and prevent relapse of schizophrenia and related conditions, like all drugs they are not without side effects.

There are two types of antipsychotics, older generation ones such as chlorpromazine or haloperidol developed in the 1960s, and so called ‘atypical’ antipsychotics such as olanzapine, clozapine and quetiapine developed in the 1990s, with a different side effect profile. While atypical newer generation antipsychotics are less likely than older generation ones to produce the extrapyramidal or Parkinson’s disease-like side effects, they can cause weight gain and precipitate or worsen metabolic syndrome or diabetes, and both types increase the risk of sudden cardiac death. Over-use and mis-use of antipsychotics is also of growing concern in the elderly(1).

Despite these risks, in a world in which the incidence and predominance of mental health conditions is rising, prescribing rates for antipsychotic drugs are increasing. Nearly seven million Americans take antipsychotic medications, and a recent study revealed a 49% rise in the use of anti-psychotic drugs by New Zealanders between 2008 and 2015. New Zealanders are now 60% more likely to be prescribed such drugs than Australians, with one in 36 New Zealand adults, or 2.81% of the population, being prescribed antipsychotic medication in 2015(2).

This recent New Zealand study also suggests that in a significant and probably increasing number of cases, these strong prescription-only drugs are being used to help with stress and associated sleep problems, rather than for their primary indication for conditions such as schizophrenia and bipolar disorders. Such ‘off label’ uses for prescription-only antipsychotics such as olanzapine, is something that has landed pharmaceutical companies in court in the U.S., in a number of prominent cases.

Herbal medicine offers an array of potential treatments for insomnia and stress-related conditions(3). One of the most suitable of these is Withania somnifera (Withania), known as Ashwagandha in India. The roots of Withania have a subtle but powerful nervous system and adrenal tonic action which insulates the nervous system from stress, enabling it to be better prepared to respond appropriately to the ‘fight or flight’ response. Many studies now support its applications for stress-associated anxiety conditions, including several human clinical trials(3).

Another possible application for Withania became apparent recently, through an American clinical trial where it was used as an adjunctive treatment alongside antipsychotic drug treatment in patients with schizophrenia(4). A total of 66 patients who had recently experienced an exacerbation of their schizophrenia symptoms, were given Withania or placebo alongside their usual antipsychotic drug medications, for a 12 week period. Outcomes were change from baseline to end of treatment on the “Positive and Negative Syndrome Scale” (PANSS), which measures total, positive, negative, and general symptoms of schizophrenia, and indices of stress and inflammation.

Patients given Withania were significantly more likely to achieve at least 20% improvements in PANSS negative, general, and total symptom scores, but not positive symptom scores, compared to those assigned to placebo. They also showed a significant improvement in stress scores compared to placebo. Additionally, only two of the Withania-treated subjects required an increase in their antipsychotic drug dosage, whereas nine of the placebo-assigned subjects either had their antipsychotic drug dosage increased or had a second antipsychotic drug added. These improvements were first noted at 4 weeks, and continued through the 12-week study period.

This is not the first time that Withania has been shown to be useful when taken alongside antipsychotic drugs. A one month clinical trial involving 30 schizophrenia patients with metabolic syndrome who had taken second generation antipsychotics for more than 6 months, found that adding Withania to their normal antipsychotic medication reduced serum triglycerides and fasting blood glucose, thus improving these metabolic syndrome symptoms(5).

Apart from Withania, clinical trials have shown appropriate doses of other high quality herbal medicines to benefit patients receiving antipsychotic drugs. Ginkgo was found to both increase the response rate to haloperidol when taken alongside it for 12 weeks(6), and to reduce the incidence of extrapyramidal side effects(7, 8). Similar effects have also been reported using Ginkgo alongside olanzapine(9).

Another U.S. study has shown American Ginseng (Panax quinquefolium) to have positive effects on memory function in individuals with schizophrenia, and to reduce the occurrence of extrapyramidal symptoms in patients on antipsychotic medications(10).

While underlying reasons for the high and increasing level of antipsychotic drug use in New Zealand and other countries should be further examined and addressed, clinical trials suggest that adjunctive herbal medicines such as Withania, Ginkgo and American ginseng, can play a role to help reduce some of the adverse events, and improve their response rates. Larger and longer term trials, are warranted.

References:
1. Bjerre LE; Canadian Fam Physician 2018; 64(1):17-27
2. Wilkinson S, Mulder RT. NZ Med J 2018 Aug 17; 131(1480):61-67.
3. Rasmussen PL, Feb 2017; Why Herbs should be the first choice of treatment for acute    anxiety. http://www.herbblurb.com
4. Chengappa KNR et al, J Clin Psychiatry 2018 Jul 10;79(5).
5. Agnihotri AP et al, Indian J Pharmacol 2013; Jul-Aug;45(4):417-8
6. Zhang XY et al, Psychopharmacology 2006; 188(1):12-17.
7. Zhang XY et al, J Clin Psychiatry 2001; 62(11):878-883.
8. Chen X et al, Psychiatry Res 2015; 228(1):121-127.
9. Atmaca M et al, Psychiatry Clin Neurosci 2005; 59(6):652- 656.
10. Chen EY et al, Phytother Res. 2012 Aug;26(8):1166-72