Medicinal Uses of Nasturtium

With spring upon us, the New Zealand countryside and our gardens are rich with budding and flowering plants, many of them normally regarded as weeds, but in fact highly medicinal.

One of these is Nasturtium (Tropaelum majus; Indian cress), a plant with water lily like circular leaves and bright yellow, orange and red flowers which is native to South America but established in many warmer areas of New Zealand and Australia. While it can certainly be very weedy in some situations, it also makes a useful plant on the edges of the vegetable garden to attract bees and other beneficial insects. It can also act as a decoy by attracting cabbage white butterflies and drawing these pests away from brassicas.

What many people don’t realise, however, is that all parts of Nasturtium are edible, with its leaves and flowers making a decorative, peppery addition to salads, and the fruits when pickled with vinegar serving as a tasty alternative to capers. It also has outstanding antioxidant activity due to its rich content of phenolic compounds, including anthocyanin and vitamin C. Like many ‘weeds’ readily available in the New Zealand environment, Nasturtium is also a highly medicinal plant.

Traditionally it was used to help ward off and treat various infections, particularly those affecting the lungs and the urinary tract. The pungent compounds known as isothiocyanates found in all parts of nasturtium and roots of horseradish (Armoracia rusticana), have powerful and fairly broad spectrum antibacterial activities particularly against Haemophilus influenza and Moraxella catarrhalis, a common cause of middle ear infection (otitis media) and sinusitus in children(1). These isothiocyanates have also recently been reported to have good activity against both developing and mature biofilms of Pseudomonas aeruginosa, a bacterial pathogen associated with many serious human illnesses(2). Importantly also, they have also been shown to be well absorbed into the bloodstream following oral ingestion of nasturtium in humans(3).

Nasturtium was used in folk medicine as a remedy against scurvy, and can be used as a natural, warming remedy to help the body overcome and prevent the common cold and influenza. It was also used traditionally to treat muscular pain, and it’s antimicrobial properties extend to its use as a topical treatment for bacterial infections and minor scrapes and cuts.

Possible applications in the prevention or treatment of various cancers are also likely, due to conversion of a key constituent glucotropaeolin to benzyl isothiocyanate, within the body. This compound, formed also from isothiocyanates found in brassica (cruciferous) vegetables, exhibits anticancer activity against cultured lung, breast, liver, prostate, brain, melanoma, oral & ovarian cancer cells in vitro, and prevents chemically induced carcinogenesis in rodents(4-10).

Potential benefits in fluid retention, hypertension and other cardiovascular conditions, have been suggested by Brazilian research showing diuretic, hypotensive and lipid-lowering activities for a hydroethanolic extract in rats(11-13). Angiotensin converting enzyme (ACE) inhibition was implicated as a possible mechanism for these effects, in a similar manner to how ACE inhibitor drugs work to help manage hypertension and other cardiovascular conditions(14). Unlike many other conventional diuretic drugs, however, no unwanted effects on urinary calcium or potassium excretion seem to occur, suggesting valuable potassium and calcium-sparing properties. These findings indicate possible applications also to help prevent osteoporosis, which is supported by another Brazilian study in menopausal rats(13).

Nasturtium may also be useful to help prevent or manage obesity, according to findings from a Korean study published in the June 2017 issue of the journal Food and Nutrition Research(15). The study investigated the effects of a nasturtium ethanolic extract on a mouse cell line with adipocyte-like characteristics, used in research on adipose (fat) tissue. Treatment of cells with nasturtium extract produced a concentration-dependent reduction in lipid accumulation, and inhibited the expression of various proteins associated with differentiation of fat cells. This suggests potential usefulness also, in the prevention and treatment of obesity.

With these compelling research findings, incorporation of nasturtium into the diet or herbal treatments of a range of human conditions common in the 21st century, should overtake our view of it simply as a bothersome weed.

References:

  1. Conrad A et al, Drug Res (Stuttg). 2013 Feb;63(2):65-8.
  2. Kaiser SJ et al, 2017 Jun;119:57-63.
  3. PPlatz S et al, Mol Nutr Food Res. 2016 Mar;60(3):652-60..See comment in PubMed Commons below
  4. Wattenberg LW. J Natl Cancer 1977 Feb;58(2):395-8.
  5. Hecht SS et al. J Nutr. 1999 Mar;129(3):768S-774S.
  6. Cho HJ et al, Int J Mol Sci 2016 Feb 22; 17(2):264
  7. Shang HS et al, Environ Toxicol 2016 Dec; 31(12):1751-1760.
  8. Yeh YT et al. Food Chem Toxicol. 2016 Nov;97:336-345.
  9. Zhu M et al J Cancer. 2017 Jan 15;8(2):240-248.
  10. Lai KC et al, Int J Oncol. 2017 Sep;51(3):832-840.
  11. Gasparotto Junior A et al. J Ethnopharmacol. 2009 Apr 21;122(3):517-22.
  12. Gasparotto Junior A et al. J Ethnopharmacol. 2011 Mar 24;134(2):210-5.
  13. Barboza LN et al, Evid Based Complement Alternat Med 2014; 2014:958291.
  14. Gasparotto Junior A et al J Ethnopharmacol. 2011 Mar 24;134(2):363-72. (2011a)
  15. Kim GC et al,.Food Nutr Res. 2017 Jun 14;61(1):1339555.

 

Advertisements

Why Herbs Should Be the First Choice of Treatment for Acute Anxiety

Anxiety can manifest in a wide range of ways. Apart from the internal emotional fearfulness, symptoms can include irritability, agitation, muscle tension, palpitations, sweating, insomnia, breathlessness, poor concentration, reduced socialisation and ability to undertake everyday activities. It is the most prevalent mental health disorder affecting children and adults, but many more people are dealing with problematic anxiety symptoms without any diagnosis.

In our increasingly changing world, where our daily exposure to stressful stimuli and life challenges can produce a rising barometer of worries, anxiety is often a major impediment to leading a fulfilling and happy life. Like most other health woes, humans have long pursued various practices to help overcome anxiety, the most popular of which is alcohol. Then there are drug medications, which have long been used to relieve anxiety, and remain widely prescribed.

Barbiturates were the first of these, sedative and anticonvulsant drugs which became popular particularly with sleep-deprived young mothers in the middle of last century, but which lead to the overdose deaths of thousands of people, including Elvis Presley and Marilyn Monroe. The next day ‘hangover effect’ from barbiturates was also always a problem, and development of a new chemical group of anxiolytic (anti-anxiety) and sedative drugs known as the benzodiazepines, lead to these superceding the barbiturates for the treatment of anxiety and insomnia. Benzodiazepines seem to act predominantly through stimulating GABA (gamma amino butyric acid) receptors in the central nervous system, and the commercialisation of Valium® (diazepam) by Roche in 1963 marked the start of a period during which this and other benzodiazepine drugs such as lorazepam, alprazolam and clonazepam began to be widely prescribed by GP’s and psychiatrists for anxiety and sleep difficulties. Between 1969 and 1982 Valium® was the most prescribed drug in the U.S., during which time Roche’s share price soared.

While safer than barbiturates, and effective as a ‘quick fix’ for anxious feelings or insomnia, safety concerns for benzodiazepines soon emerged. Feelings of fatigue, or a hangover the following day when taken as sleeping tablets, and a wide range of other side effects are all too common experiences. Most significant of these is the development of tolerance when they are used for more than a short period of time. As anyone who has been through it will testify, withdrawing from long term benzodiazepine use is a hugely stressful, unpleasant and often very protracted experience.

Feelings of depression can both contribute to or arise from excessive anxiety, and it is not uncommon for feelings of low mood and a low tolerance to stress, to be experienced together with anxiety. Apart from GABA, neurotransmitters such as serotonin, adrenaline and dopamine are intrinsically involved in influencing our emotions and mood, interacting together in complex ways that scientists still have little understanding of. It is therefore not surprising that many SSRI’s (selective serotonin reuptake inhibitor) drugs, used primarily as antidepressants, can have an anxiolytic effect in some people, and in many countries, these are often prescribed instead of or together with benzodiazepines, for anxiety conditions.

While sometimes effective as anxiolytics and less likely to produce adverse effects than most older generation tricyclic antidepressants, some find that SSRI’s can cause or increase anxiety feelings, or experience any one or more of a wide range of unpleasant side effects including insomnia, weight gain, emotional numbing or sexual dysfunction.

Another class of non-benzodiazepine sleeping tablets, the so-called  ‘Z-drugs’ such as zopiclone and zolpidem, have become popular in recent years, and while initially thought to be less habit-forming than benzodiazepines, they can also be very difficult to withdraw from after more than short-term use.

A large number of herbs have been traditionally used for nervous conditions and their anxiolytic effects, several of which have been shown in clinical trials to be beneficial as anxiety treatments. These include Chamomile, Skullcap, Passionflower, Valerian, Kava, Lemon balm and Withania.  Despite the number of well-designed trials undertaken to date being relatively low, and results sometimes variable depending on the particular herbal product(s) and dosages used, results are encouraging and in all cases show a better safety profile than for comparable anxiolytic drugs.

Of these, Kava (Piper methysticum), is the most studied, and is a non-addictive anxiolytic with great potential to treat anxiety. Its effectiveness in treating anxiety has been affirmed through several clinical trials and meta-analysis(1-3). While case reports of liver toxicity associated with kava usage lead to its restriction in some countries at the end of last century, use of the wrong plant part as raw material, or use in combination with alcohol or various drugs, were likely contributory factors. Also the frequency of such adverse events reports was substantially less than that for paracetamol, a commonly used analgesic.

Aerial parts of the herb Passionflower (Passiflora incarnata), have also been taken for anxiety for many centuries, and in a trial involving 36 outpatients with generalized anxiety disorder, it was as effective as the benzodiazepine drug oxazepam, but unlike oxazepam caused no impairment of job performance(4).

Roots of the herb Withania (Withania somnifera, Ashwagandha), have a subtle but powerful nervous system and adrenal tonic action, which insulates the nervous system from stress, and enables the adrenal glands to be better prepared to respond appropriately to stressful stimuli. A large number of scientific papers now support its applications for stress-associated anxiety conditions, including several recent human clinical trials(5,6).

While further studies involving greater participant numbers and longer term treatment are needed to identify optimal dosages and phytochemical makeup of the treatments involved, the fact that most herbal anxiolytic agents are safe and have the same or only a slightly higher incidence of adverse effects to placebo, is clear. It is therefore logical that before reverting to drug medications, more likely to produce unwanted adverse effects and in some cases long term dependency, herbal anxiolytics should be tried, in anxiety conditions.

Refs:

  1. Sarris J, Aust NZ J Psychiatry 2011; 45(1):27-35.
  2. Sarris J, J Clin Psychopharmacol 2013; 33(5):643-648.
  3. Savage K et al, Trials 2015; 16:493.
  4. Akhondzadeh S et al, J Clin Pharm Ther 2001; 26(5):363-367.
  5. Chandrasekhar K et al, Indian J Psychol Med 2012; 34(3):255-262.
  6. Pratte MA et al, J Altern Complement Med 2014; 20(12):901-908

Manuka Oil as an Alternative to Antibiotic Creams

New Zealand has a higher incidence of Staphylococcus aureus infections than anywhere else in the developed world, and there has been a significant increase in the number of infections over the past decade, with Māori and Pacific children particularly affected.

manuka-flower-macro

Over usage of an antibiotic is likely to have contributed to this paradoxical increase in serious skin infections, according to results from a Health Research Council funded study. This revealed an increase in the prevalence of resistance in Staphylococcus aureus from 17% in 1999, to 28% in 2013. Dr Deborah Williamson, the clinical microbiologist who lead the study, made the statement in a recent press release that “The increase that we’ve seen in the incidence of serious skin infections in New Zealand children has happened at the same time as an increase in the dispensing of topical fusidic acid to treat skin infections”(1).

Fusidic acid is an antibiotic derived from the fungus Fusidium coccineum and was first released for clinical use in the 1960’s. A 2% fusidic acid cream is currently recommended as a first-line treatment for serious skin infections such as impetigo (school sores), infection of the hair follicles and boils. Most of these are due to the bacteria Staphylococcus aureus, including the notorious methicillin resistant Staphylococcus aureus (MRSA). Like all antibiotics, drug resistance can develop, and this is invariably at a rate proportionate to the extent of usage.

In a paper published in the New Zealand Medical Journal last December, Dr Williamson reviewed the history and usage of topical antimicrobials in New Zealand (2).

This painted a somewhat alarming picture, and the fusidic acid story is an all too familiar one. Another topical antimicrobial agent widely used throughout the 1990s, mupirocin (Bactroban©), was for many years made available to purchase ‘over-the-counter’ (OTC). This led to high levels of use, and subsequent high rates of resistance, and by 2000, approximately 14% of S. aureus isolates displayed high-level resistance to mupirocin(3) . From April, 2000, regulatory changes lead to mupirocin being restricted again to ‘prescription only’, and the resulting decreased usage lead to a fall in the prevalence of high-level mupirocin resistance in S. aureus from 14.2% in 2000, to 8.3% in 2014 (4).

New Zealand is not alone in having a high rate of bacterial resistance to topical antimicrobials, and resistance to antibiotics poses a major global threat, according to a 2014 report by the World Health Organisation(5). Resistance is happening in every region of the world, and unless some major developments take place soon, humankind could be heading towards a time when once again, antibiotics cannot be relied upon to protect against simple infections including those that are risk factors associated with surgery. Development of strategies to mitigate further increases in antimicrobial resistance to topical treatments, is urgently required(6, 7).

Key to this, should be effective wound management. This should combine mechanical-chemical procedures such as debridement, antiseptics, and antimicrobial supportive compresses to help remove the biofilm (an association of microbes and slime which adheres to the surface of the wound, delaying granulation tissue formation and migration of epithelial cells).

Limitation of the level of usage of drug-based antimicrobials, or using two or more of them together rather than alone, and avoidance of topical antibiotic use in common conditions such as acne, are other ways to help reduce the likelihood of resistance(8).

Plants contain a large number of diverse chemicals (phytochemicals) which they produce as defence tools to enable them to survive in their particular environment, and some of these have potent antibacterial activities which can help us fight a wide range of common skin infections.

manuka-2The New Zealand native Manuka (Leptospermum scoparium) is one of these, and the ability of certain forms of Manuka Honey to act as potent healing agents for wounds and ulcers, is becoming increasingly recognised(8). Many clinical trials have now shown manuka honey dressings to have unique healing properties in chronic leg ulcers and other stubborn skin infections, and synergistic antimicrobial activities with various antibiotics, have recently been reported(10,11).

Manuka’s medicinal properties extend way beyond those of the honey that bees manufacture from its pollen, however, and other parts and extracts of this wonderful plant, have therapeutic activities. Manuka essential oil has also been shown to exhibit powerful antimicrobial properties, particularly against Staphylococcus aureus and other Gram positive bacteria, yeasts such as Candida albicans and fungi such as Trichophyton rubrum, responsible for athletes foot. Manuka oils which are rich in beta triketone compounds, appear to have the strongest antimicrobial activity.

The extent to which topical application of an extract of this plant can rival drug-based treatments at overcoming sores, was highlighted by a research project by two students at Whangaroa College in Northland recently. After hearing about a fellow student’s spider bite that wouldn’t heal until it was treated with a native plant preparation, the two students, Cheyenne Rush and Georgia Mills, decided to investigate the antibacterial properties of manuka essential oil and an extract of another native plant kawakawa (Macropiper excelsum).

Their experiment, which they entitled Te Rongoa Māori , involved collecting and growing colonies of bacteria, spreading these onto agar plates and applying a quarter of a teaspoon of each product to be tested. The relative rates of decline of the bacteria was recorded daily for 14 days, for the manuka oil and kawakawa extract preparations, in addition to the well known antiseptics Savlon® and Betadine®, which were applied to other agar plates as controls.

The results showed that manuka oil was the most powerful antibacterial, followed by Savlon® then Betadine®, with the Kawakawa leaf extract the least effective. Cheyenne and Georgia’s project thus showed that a simple, traditional plant preparation can be more effective than prominent antiseptic products in fighting wound colonising bacteria. It also won them a top prize at the recent Top Energy Far North Science and Technology Fair, which involved more than 150 participants from 10 schools in upper Northland(12).

Refs:

  1. Media Release from the Health Research Council, Soaring rate of skin infections linked to resistance.NZ Doctor, 20 September 2016.
  2. Williamson D et al, A bug in the ointment: topical antimicrobial usage and resistance in New Zealand. NZ Med J 2015; 128(1426):103-9.
  3. Upton A et al, Mupirocin and Staphylococcus aureus: a recent paradign of emerging antibiotic resistance. J Antimicrob Chemother. 2003; 51:613-617.
  4. Heffernan H et al, Demographics, antimicrobial susceptibility and molecular epidemiology of Staphyloccosu aureus in New Zealand, 2014. https://surv.esr.cri.nz/PDF_surveillance/Antimicrobial/Staph/2014Saureussurveyreport.pdf
  5. Antimicrobial Resistance: Global report on surveillance. World Health Organisation, who.int.ISBN 978 92 4 156474 8; (http://www.bbc.com/news/health-27204988).
  6. Williamson D et al, Missing in action: an antimicrobial resistance strategy for New Zealand. NZ Med J, 2015; 128(1427):65-67.
  7. Williamson DA, Hefferman H. The changing landscape of antimicrobial resistance in New Zealand. NZ Med J 2014; 127(1403):41-54.
  8. Walsh TR, The Lancet Infectious Diseases, 2016; 16(3): 23-33
  9. Carter DA, Front Microbiol 2016; 7:569
  10. Muller P et al, PLoS One 2013; 8(2):e57679
  11. Liu M et al, Front Microbiol 2015; 5:779.
  12. https://ssl-www.stuff.co.nz/auckland/local-news/northland/83909327/Manuka-proves-best-bacteria-fighter

Respiratory Health in Singapore and Herbal Options

I recently spent a couple of days in Singapore, where herbal product needs are currently somewhat different to those in my New Zealand home. September in Singapore generally marks the start of the 3-4 month so-called ‘Haze season’, a period in which the air can be tainted for days on end, with a haziness due to smoke drift from fires in nearby Indonesia. The annual haze season started early this year, in late August, and on 26 August Singapore’s 24 hour Pollutant Standards Index (PSI) entered the ‘unhealthy’ range of above 100, while its 3-hour PSI reached 215(1). As with the haze last year, when the PSI reading at times exceeded 300, most people didn’t venture out without a face mask.

Agricultural fires are an annual occurrence across Sumatra and in parts of Kalimantan on Borneo, as corporations as well as small-scale farmers use slash-and-burn methods to clear vegetation for palm oil, pulp and paper plantations. As well as trees and forests, there is much peat land in these parts of Indonesia, and peat fires can burn and smoulder underground for several months.

Tsmog-over-the-city-1197986-639x359he haze contains particulate matter, fine particulate matter, heavy metals and poly aromatic hydrocarbons, and at its peak can measure hundreds of kilometres across. As well as affecting Singapore’s air quality and visibility, the air pollution can spread to Malaysia, southern Thailand and the Philippines. This can have a major impact on the health of the people and plants of these countries, and of course those of Indonesia itself.

Fine particulate matter especially, can enter deep into the lungs, causing respiratory illnesses and lung damage. Particulate matter pollution and its constituents also damages plant morphological structure, flowering, water content, growth and reproduction, and can have genotoxic impacts(2). Epidemiological studies have shown an increase in morbidity and mortality rates from chronic obstructive pulmonary disease after exposure to elevated levels of air pollution, and associations between lung cancer and cardiovascular diseases, are well established.

This situation leads to increased demand for herbal lung health products in Singapore by the local population seeking to do more than wear a mask to protect their lungs against the damaging effects of the haze. Herbs that gently support and encourage the natural expectoration process of the millions of cilia cells lining our bronchial trees, whose role is to remove excess mucus and potentially harmful substances such as particulate matter or unwanted allergens, are therefore useful. These include mucilaginous (polysaccharide hydrocolloid rich) and expectorant herbs such as Marshmallow (Althaea officinalis), Mullein (Verbascum Thapsus) and the NZ native Hoheria (Hoheria populnea). Other traditional lung herbs such as Elecampane (Inula helenium), White horehound (Marrubium vulgare) and Hyssop (Hyssopus officinalis), are also useful. For Singaporeans having to live in the seasonal haze, or citizens of cities in China and many other countries where air pollution is a regular feature of life, in order to help protect against reduced levels of cellular oxygenation and an increased risk of bronchial congestion, asthma, lung cancer and heart disease, these herbs can be useful daily tonics.

In addition, certain herbs have chemo-preventive or protective effects against cellular damage and carcinogenicity, that may be helpful when exposure to air pollution is unavoidable. Apart from its anti-inflammatory, antimicrobial and antioxidant properties, evidence suggests a possible protective effects against lung cancer by roots of the warming volatile oil rich Elecampane(3).  The root of the fiery Horseradish (Armoracia rusticana)(4), and aerial parts of Nasturtium (Tropaelum majus),(5-6) also both contain phytochemicals with established chemo-preventive effects against cancers, that seem to be well absorbed into the bloodstream when taken orally. These and expectorant actions make them specifically indicated to help prevent lung damage in those exposed to regular dangerous levels of airborne pollution, such as the annual Haze in Singapore.

untitled-design-17While considering this situation, I couldn’t help notice the presence of palm oil still in chocolate sold throughout Singapore, unlike certain other countries where it has been removed due to public concerns around the environmental impacts of a huge increase in palm oil plantations. Similarly the importation of palm kernels for use as a supplementary feed to dairy cows in New Zealand, needs a mention. Reflecting on this as well as the widespread use of palm oil in cheap vegetable oils and in many other food and non food consumer items found globally, there is clearly a need to address the underlying cause of such environmental pollution and factors responsible for poor human health, in a more integrative way. This burning of indigenous forests in Indonesia is related also to poverty as well as poor regulation by authorities there, but corporate greed, consumer usage and lack of awareness or concern for environmental and economic impacts, is contributory.

Until the slash and burn method of land clearing in Indonesia is stopped, health effects on the millions of people living in the region, and ongoing widespread loss of bio-diverse rich forests and destruction of the habitat of endangered species such as orangutans, tigers, elephants and rhinos, will continue.

 

Refs:

  1. “The haze is back across South East Asia”. BBC. Retrieved 26 August 2016.
  2. Rai PK, Ecotoxicol Environ Saf 2016; 129:120-136.
  3. Li Y et al, Z Naturforsch C 2012; 67(7-8):375-380.
  4. Weil MJ et al, J Agric Food Chem 2005; 53(5):1440-1444.
  5. Platz S et al, Anal Bioanal Chem 2013; 405(23):7427-7436.
  6. Pintao AM, Planta Med 1995; 61(3):233-236.

How Quickly should Herbs Work?

One of the most common questions I have from my new patients when recommending or prescribing them herbal medicines for the first time, is ‘how long will it take to work’? This is totally understandable, particularly when they are often grappling with a serious health complaint, or have pushed their budget to afford to pay for an unsubsidised consultation and herbal treatment.

IMG_0953

When my answer is invariably that that they should notice an improvement either straight away or within a short space of time, the reaction is usually one of surprise. This is because there seems to be a fairly common misconception among consumers and many health practitioners that herbal medicine and the ‘natural approach’ to treating a health ailment usually takes a long time to manifest results.

There is no question that certain drugs such as the steroid prednisone, can invoke a dramatic and sudden amelioration in inflammation or related symptoms, or that use of nitrolingual spray has a virtually instantaneous effect in angina.  However, for most everyday human health conditions, herbs work as quickly as drugs in resolving the problems concerned.

Diarrhoea and dysentery, are situations where a rapid rather than protracted response is called upon when taking a remedial treatment. Until a couple of hundred years ago when refrigeration was invented and human public health measures improved, such lurgies were also extremely common. Back then and still today in many countries, most communities relied heavily on the use of local tannin-rich herbs with astringent properties, to help manage such problems. These ranged from Agrimony (Agrimonia eupatoria) and Oak bark (Quercus robur) in European herbal medicine, to Koromiko (Hebe salicifolia) and Tanekaha (Phyllocladus trichomanoides), in traditional Mâori medicine. Tannin-rich plants were also applied as poultices and other topical preparations to help stop bleeding from battle wounds or accidents, where again rapid haemostatic actions which halted such bleeding and promoted healing as quickly as possible, were very important. Such use included well known plants such as Tormentil (Potentilla tormentilla), Harakeke (Phormium tenax) and Pohutakawa (Metrosideros excelsa). It is also reflected in the Latin names of other well-known plants such as Yarrow (Achillea millefolium), used by the Greek warrior Achilles on his soldiers spear and sword wounds.

One of the best treatments for bruises, strains and sprains, Comfrey (Symphytum officinale), starts providing pain relief and an anti-inflammatory effect within 30 minutes of application, according to clinical trials on an ointment preparation. This is just as rapid as mainstream gel treatments containing non-steroidal anti-inflammatory drugs (NSAID’s).

Despite drug companies throwing billions of dollars at research aiming to develop a superior analgesic, the Opium poppy derived alkaloid morphine remains the most highly regarded and used analgesic for major pain. This status has been maintained not only because of its ability to overcome intense pain, but also the speed of its onset of action. Similarly, the rapidity of onset of mood changes following marijuana smoking, is another testament to how quickly herbs can produce their many pharmacological effects.

Insomnia can be a highly debilitating condition which requires effective and fast acting remedies. The use and reputation of well-known herbs such as Valerian, Kava, Passionflower and Skullcap as aids to sleep, is based upon acute or single dose ingestion shortly before retiring, in the same manner as sleeping tablets such as zopiclone. Their effectiveness varies from person to person, and is of course dependent on adequate doses of sufficiently good quality product, but they should either work straight away, or there’s little point in persisting. Use of these and other herbs as part of an approach to managing anxiety disorders, should also invoke some degree of relaxation within an hour or so of ingestion, in a similar manner to benzodiazepine drugs such as diazepam (Valium®). Both drugs and herbs seem to work on the same sites of action (GABA, gamma-aminobutyric acid receptors) within the body, to produce these anxiolytic actions.

st-john-s-wort-1148375

However, just as with drugs, not all herbs produce resolution of symptoms straight away, and the improvement in feelings of depression following appropriate treatment, is an example of where a longer timeframe is involved. Like antidepressant drugs, the herb St Johns Wort (Hypericum perforatum),  only manifests its antidepressant action after 3-5 weeks of daily administration in most cases. This is probably related to the time required for its active phytochemicals to modulate serotonin and other involved neurotransmitter systems, in order to produce an antidepressant response.

To summarise, we are often mislead into thinking that ‘herbs take longer to work than drugs’. While the timeframe between starting herbal treatment and a response being achieved is highly variable depending on the condition and person being treated, effective herbal medicine treatment should in most cases take no longer than that of drug treatments.